
Soluzione esercizio I.1

a) La lattina si muove di rotolamento puro rispetto al nastro. Quando questo
è accelerato con accelerazione costante aN la lattina subisce una forza di
attrito costante orizzontale. Questa è l’unica forza che agisce sulla lattina in
direzione orizzontale e non è nulla, quindi il centro di massa della lattina si
muove con accelerazione orizzontale costante a.

Per determinare questa accelerazione scriviamo le equazioni del moto nel
sistema di riferimento non inerziale, solidale col nastro, dove l’accelerazione
del centro di massa sarà a0

(
ma0 = �maN + Fatt

I↵ = RFatt
(1)

dove con I indichiamo il momento d’inerzia del cilindro omogeneo rispetto
al proprio asse di simmetria, I = 1

2mR2.
Usando la condizione del rotolamento puro

a0 = �↵R, (2)

si ottiene
m

✓
1 +

I

mR2

◆
a0 = �maN (3)

da cui, inserendo l’espressione del momento d’inerzia,

a0 = �2

3
aN =) ↵ =

2

3

aN
R

(4)

La condizione che lega le accelerazioni espresse nei due sistemi di rife-
rimento è a = a0 + aN , quindi, rispetto all’osservatore inerziale esterno la
lattina ruota in senso antiorario e il suo centro di massa si muove in avanti
con accelerazione

a =
1

3
aN (5)

Si noti che la forza di attrito subita dalla lattina è

Fatt =
I↵

R
=

1

3
maN , (6)

e non dipende dal coefficiente di attrito.
Questo sistema è analogo al rotolamento puro di un cilindro omogeneo

che inizialmente fermo viene lasciato su un piano inclinato. La proiezione
della forza di gravità agirà in maniera equivalente alla forza apparente nel
sistema del nastro accelerato.

In una situazione più realistica al supermercato, si avrà che il nastro parte
con una accelerazione iniziale, per poi muoversi di velocità costante ed infine
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decelerare e fermarsi. Durante la fase di velocità costante, in condizione
di rotolamento puro, la forza di attrito è praticamente nulla e la lattina
continuerà a ruotare su sé stessa con velocità angolare costante (il centro
di massa sarà fermo rispetto all’osservatore esterno). L’arresto del nastro,
infine farà muovere la lattina verso sinistra, inizialmente accelerando e poi,
quando il nastro sarà fermo, di velocità costante, sempre con moto di puro
rotolamento.

b) La lattina comincerà a slittare quando l’attrito statico richiesto per man-
tenere il rotolamento puro sarà maggiore del massimo attrito statico:

I↵ = RFatt < RµsMg. (7)

Sostituendo ↵ trovato sopra si ottiene che

aN < 3µsg = 7.36 m/s2 (8)

è la condizione sull’accelerazione del vassoio per avere rotolamento puro,
oltre il barattolo comincerà a slittare.

c) L’energia cinetica rispetto al centro di massa è semplicemente

ECM
K (t) =

1

2
I!2(t) =

1

2
I(↵t)2 =

1

9
Ma2N t2 (9)

Rispetto al riferimento inerziale abbiamo invece dobbiamo aggiungere a que-
st’ultima l’energia cinetica di traslazione del centro di massa

EK(t) = ECM
K (t) +

1

2
M
⇣aN

3
t
⌘2

=
1

6
Ma2N t2 (10)

d) Il momento angolare può essere scomposto come la somma di quello
rispetto al centro di massa e di quello dovuto al moto del centro di massa:

Lz(t) = ICM!(t)�Rmv(t) =
mRaN

3
t� mRaN

3
t = 0 (11)

Questo risultato poteva essere atteso in quanto, rispetto al polo che abbiamo
preso in considerazione, non ci sono momenti delle forze esterne (quella di
attrito), quindi il momento angolare si conserva e mantiene il valore che
aveva prima dell’inizio dell’accelerazione, quando tutto era in quiete.

e) Scriviamo le equazioni del moto attorno al punto di equilibrio
(
ma = �2k�x+ Fatt

I↵ = Fatt R
. (12)
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Sostituendo la forza di attrito ed usando la condizione di rotolamento puro
(2) si ottiene l’equazione

�̈x = �4

3

k

m
�x, (13)

che è un’equazione armonica da cui possiamo ricavare il periodo

T = 2⇡

r
3m

4k
= 1.86 s (14)

Soluzione esercizio I.2

a) Il momento angolare totale rispetto al centro della piattaforma si conser-
va, infatti l’unica forza esterna che può fare momento è la reazione vincolare
sull’asse della piattaforma (che dà un momento nullo essendo applicata pro-
prio sull’asse). Quindi possiamo uguagliare il momento angolare prima del
lancio con quello dopo il lancio:

0 = I! � R

2
m0vb, (15)

dove il momento d’inerzia è la somma di quello della piattaforma e di quello
della giocatrice

I =
MR2

2
+m

✓
R

2

◆2

. (16)

La velocitá angolare della piattaforma dopo il lancio sarà quindi

! =
m0vb

R(M + m
2 )

= 0.104
rad

s
⇠ 1

giri

min
(17)

b) A questo punto la giocatrice farà un moto circolare uniforme. La piat-
taforma deve quindi esercitare, oltre alla reazione vincolare verticale per
bilanciare la forza peso, anche una forza di attrito statico che fornisca la
necessaria accelerazione centripeta. Abbiamo quindi

(
Nz = mg = 490.5 N
Nr = mR

2 !
2 = 1.35 N

(18)

c) Prendiamo gli assi del sistema di riferimento inerziale centrati nel centro
della piattaforma e orientati di modo che la pietra venga lanciata in direzione
�y dalla posizione iniziale (R/2,0). Il tratto che deve percorrere per arrivare
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al bordo del disco è lungo
p
3
2 R e quindi le coordinate cartesiane della pietra

quando raggiunge il bordo sono

(xp, yp) =

 
R

2
,

p
3

2
R

!
(19)

Per arrivare impiegherà un tempo

t0 =

p
3

2

R

vb
. (20)

Nel frattempo la giocatrice avrà percorso un angolo

✓0 = ! t0 = �
p
3

2

m0

M +m/2
= 0.096 rad, (21)

le coordinate cartesiane saranno quindi

(xg, yg) =

✓
R

2
cos ✓0,

R

2
sin ✓0

◆
. (22)

La distanza tra le due a questo punto può essere calcolata come

d =

vuut
✓
R

2
cos ✓0 �

R

2

◆2

+

 
R

2
sin ✓0 �

p
3

2
R

!2

= R

s
5

4
� 1

2
cos ✓0 �

p
3

2
sin ✓0

= 4.09 m.

(23)

d) L’equazione del moto della pietra nel sistema di riferimento in rotazione
sarà

m0
~a0 = �m0

⇣
~! ⇥ (~! ⇥ ~r0)

⌘
� 2m0~! ⇥ ~v0b (24)

dove le quantità primate sono quelle rispetto al sistema di riferimento non
inerziale.

La traiettoria non si può ricavare analiticamente ma ci si può aspettare
sarà una spirale che parte da R/2.

E’ comunque possibile scrivere le leggi orarie considerando che nel sistema
di riferimento inerziale la legge oraria è

(
x(t) = R

2

y(t) = �vb t
, (25)
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quindi, in quello non inerziale, applicando una rotazione del sistema di
riferimento, avremo

(
x0(t) = R

2 cos(!t) + vb t sin(!t)

y0(t) = R
2 sin(!t)� vb t cos(!t)

(26)

e) Durante gli spostamenti della giocatrice il momento angolare si conserva,
quindi la velocità angolare del sistema è legata a quella iniziale da

I(r)!(r) = I! (27)

da cui

!(r) =
MR2/2 +mR2/4

MR2/2 +mr2
! = �m0vb

MR

1

1 + 2 mr2

MR2

(28)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

(M
R

/m
0
v

b
)|
ω
|

r/R

Figura 1: Velocità angolare in funzione della posizione della giocatrice.

7


